发布时间:2022-06-17
IGBT是允许短路的,完全有这样的底气,EconoDUAL?3 FF600R12ME4 600A 1200V IGBT4的数据手册是这样描述短路能力的,在驱动电压不超过15V时,短路电流典型值是2400A,只要在10us内成功关断短路电流,器件不会损坏。
IGBT的短路承受能力为短路保护赢得时间,驱动保护电路可以从容安全地关断短路电流。
短路能力不是免费的
器件的短路能力不是免费的,代价是器件损耗。短路能力可以用短路承受时间来描述,提高短路承受时间可能需要牺牲饱和压降,进而关联到关断损耗,因为饱和压降高了,有时需要牺牲关断损耗来降低。
一种方法是——把IGBT中的MOS沟道做宽,提高MOS沟道的宽长比W/L,可以降低导通时的饱和压降,但这样短路电流会增加,短路可承受时间缩短。
基于这机理,IGBT的技术在发展:
有些应用并不会发生器件短路,譬如Boost电路等,这时可以使用不保证短路承受时间的器件,如英飞凌TRENCHSTOP?5系列,不支持短路工况,但可以支持极低的导通损耗或者极高的开关频率。
得益于应用技术的进步,驱动保护电路的完善,系统能够识别出短路并且关断IGBT所需要的时间越来越短,因此允许我们设计出短路时间更短的IGBT。例如,英飞凌的IGBT7短路时间是6us @ 175oC,EDT2芯片是3us@175oC,以短路承受时间换芯片低损耗性能。
大电流不一定是短路
上面讨论有些应用并不会发生器件短路,而不是系统输出不会短路,系统输出短路会在器件上产生大电流,设计中必须要考虑合适的过载保护,把器件的关断电流控制在反向安全工作区内,对于IGBT模块一般是两倍的标称电流。
大电流不一定是短路,为了讲清这个问题,我们需要分析IGBT的输出特性Ic=f(Vce),图中是FF900R12ME7_B11,900A 1200V IGBT7的输出特性,它给出了在2倍的标称电流以内,在不同栅极电压驱动时的集电极和发射极之间电压。图表中的最大电流是1800A,这是900A IGBT模块能保证的关断电流值。
为了讨论问题我把输出特性Ic=f(Vce)展开一下,展开到9倍的标称电流,7-8倍的饱和压降,这样各种要解释IGBT大电流工况都在图上了。
1.正常工况---反向工作安全区RBSOA:
图中绿色的部分是反向工作安全区RBSOA的一小部分,在这区域内只要不超过最高工作结温,每个周期能可靠关断的电流,条件是在饱和状态下关断,在关断过程中,Vce电压上升,但不能超过器件耐压值。
2.短路区域
绿框框起来的是在栅极电压13-15V的短路区域,可以在图中读出在Vge=15V,短路电流被器件自动限制在5倍的标称电流,这时器件退出饱和,Vce电压快速上升,驱动电路检测Vce上升到几倍的饱和压降,就可以执行短路保护了,器件是安全的。
3.降额短路区域
短路时由于集电极的dv/dt,通过CGC在栅极会感应出一个小电压,把Vge电压抬高,这时IGBT进入了降额短路区域,短路电流增大,短路承受时间缩短。
4.禁止开关区域
器件电流超过了2倍的标称电流,但是器件没有退出饱和,这时器件上的电压比短路时低,貌似器件还比短路时舒服一点,但不行,这时不允许关断,一定要等到器件退出饱和才允许关断IGBT。
大电流工作范围是绿色区域,短路区域的例子图中用红绿框框起来的部分,这时电流大,并且器件退出了饱和区,反向工作安全区,电流不能超过RBSOA的规定值,关断开始时刻器件是饱和状态,这是不连续的两个区域。
原理性解释参考:如何理解IGBT的退饱和现象以及安全工作区
大电流和短路那个更可怕?
为了说明问题,我们出一道计算题:
大电流
给IGBT一个电感负载,红色的电感电流从零开始线性上升,100毫秒内达到2倍的IGBT标称电流,蓝色的是IGBT饱和电压,Vce=V0+Ic*r,电压是在Vo基础上线性上升。
短路
把IGBT接在900V直流母线上,在短路前的初始状态,电流已经接近2倍的标称电流,这时发生短路,电流快速上升到6倍的标称电流,短路检测电路在10us时成功关断IGBT,关断前的母线电压是900V,在10us内,短路功率是6倍的标称电流乘以900V,如果以600A 1200V为例,短路瞬时功率为3.24MW!!!
冷静下来看看积分的结果,100ms内IGBT损耗能量是0.3Ws*In/A,而10us短路的能量是0.054Ws*In/A,谁大谁小,大大出乎意料。在这个例子在短路时的损耗只有IGBT 100ms电感工况下的18%。但由于由于短路时瞬间电流和功率非常大,结温会大大超过芯片允许的工作结温,对器件的物理连接的机械应力也很大,是个严酷工况。参加参考文章:功率半导体冷知识:IGBT短路结温和次数。
结 论
只要IGBT的短路保护电路和系统过载保护设计合理,短路不用手发抖。
上一篇:有源前端整流器
热点排行